
Acta Cryst. (1977). A33, 819-822 

Expansion of  the Madelung Parameters of Non-Cubic Structures as a Function 
of the Ratio of Two Lattice Parameters 
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A new method is described to express the Madelung parameter of a structure with a non-cubic Bravais 
lattice as a function of a lattice parameter by means of a power series expansion. The method is derived 
for the case of a cubic lattice which is tetragonally distorted. The generalization to other crystal structures 
is shown. For illustration the method is applied to the rutile and cadmium iodide structures. 
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Introduction 

In this paper a method is described to find an analytical 
expression of the Madelung parameters of non-cubic 
structures in terms of the ratio of two lattice param- 
eters. Such an expression is useful, if the variation of 
the Madelung energy of a structure with two lattice 
parameters has to be considered as a function of one 
lattice parameter, while the other is kept constant. A 
problem of that kind arises, for instance, if the lattice 
energy has to be minimized with respect to one par- 
ticular lattice parameter. 

There is a further advantage of this method: once 
the expansion coefficients for a definite structure are 
computed, the Madelung constants of all compounds 
of this structure with the same parameter u but with 
different axial ratios may be evaluated simply by 
summing the series. 

As an illustration, the Madelung parameters of the 
rutile and the cadmium iodide structures as a function 
of c/a have been calculated. The coefficients given in 
Table 2 can therefore be used to evaluate very quickly 
and conveniently the Madelung constants of all com- 
pounds with rutile or cadmium iodide structures as 
far as the parameters u agree with those assumed in 
this calculation (Table 1). 

Method of calculation 

The Madelung energy of an ionic crystal lattice can 
be written in the form 

UM-- e2NA ½ ~ ~ zizj~(ri--rj), (1) 
a i j 

where eo is the elementary charge, NA is Avogadro's 
number, and z~ the valency of ion i at the position 
ri of the unit cell. The sums over i and j extend over 
all ions of the basis. 

kU(ri-r j) are lattice sums which are defined by: 

1 
~V(ri--rj) = k~ ]Rk_ri+rj[. (2) 

Summation is performed over all vectors R k of the 
infinite real lattice. 

For ri = rj the self potential iv(0) is obtained, where 
the term for Rk = 0 is excluded from the summation: 

1 
~v(0)= ..~ [RRI" (3) 

Rk¢0  

The Madelung parameter Ma, based on the lattice 
parameter a, 

Ua 
m . -  22e2NA (4) 

can be written according to (1) in the form: 

ZiZj 

where z is the smallest absolute value of the valencies 
zi. It will be shown that in the case of a tetragonal 
distortion of a cubic lattice with fixed atomic positions 
the Madelung energy and the Madelung parameter 
can be expanded in a series of powers of the parameter 

The Madelung parameter M, then takes the form: 

Ma=  -a ~ emMtm), (7) 
C m = 0  

where the coefficients M~ m) are independent of the 
axial ratio a/c. The power series expansion (7) is con- 
vergent for ]el < 1, which is equivalent toa/c< 1/2. 

However, this method is not only applical~le if a 
tetragonal distortion of a cubic structure is considered, 
which is assumed here for convenience, but for all 
distortions where a lattice parameter is varied keeping 
the other lattice parameters and the atomic positions 
constant. 

The lattice sums ~(r) (2) have to be transformed into 
rapidly converging series. They can be written as a 
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sum over the reciprocal lattice (Ewald, 1921): 

~(r)= -~  ~ '  exp (iq,. r) (8) 
q,~ 

In this equation q~ may be written as: 

qz = 2n(llba +/2b2 + labs), (9) 

where b~, b2, ba are the fundamental translations of 
the reciprocal lattice, and analogously: 

r =plax +p2a2 +paaa, (10) 

where al, a2, a3 are the fundamental translations of 
the real lattice, f2 is the volume of the (tetragonal) 
unit cell. The summation extends over all vectors of 
the (infinite) reciprocal lattice, where the term for 
qz = 0 has to be omitted. 

If the tetragonal unit cell is considered to result from 
a distortion of a cubic cell with the same atomic posi- 
tions and the same lattice parameter a, (8), with (6), 
can be expressed as: 

q21 2 2 2 2 l + ql2 + (a /c )qza 

= ~ ~' q~[l_o~(q~s/q~)]. (11) 

In this equation ~, q~, and r refer to the undistorted 
cubic structure. 

The expression in (11) can be expanded in a series 
of powers of ~: 

~(Pl,P2,Pa): 4-~2~2 (a)  ~t 'exp(iq''r) ~ lx"(q2jq2)" 
q2 m=o 

(12) 

If 0~ designates the angle between the vectors q~ and 
q/a then 2 2 qza/qz is given by 

2 2 (qla/ql) = COS2 01 (13) 

and (12) takes the form: 

-~-4n(a) ~ ~ , T  exp(ith.r)q2 
~ ( P l ' P 2 ' P 3 )  = E '  COS2" Ol 

m=O 

= ~ a"~l")(pl,P2,pa ) . (14) 
m=0 

This equation leads to an expression for the Madelung 
energy: 

U u -  eoNa ~ a,.½ 2 Z ziz~ 
C m=O i j 

x ~lm)(pli--plj, P2i--P2j, Pai--paj) , (15) 

and for the Madelung constant: 

a '~ ~m½~z , z . i  
M"= c E z 2 

ra=O " " 

× I~(m)(P 1i --  P l j ,  P2i  - -  P2 j ,  P s i  - -  P3 j )  

a 
- -  - ~ a toM (")  , ( 1 6 )  

C m=0 

with the usual relation (4) between these two quanti- 
ties. 

To calculate the lattice sums (14), cos 2m 0~ is ex- 
panded in Legendre polynomials (Sneddon, 1956): 

Cos2m Ol = ~ a2.P2. (cos 0l) 
n=0 

4n+1 fx x"P2,(x)dx a2, - 2 _ ~ 

(2m)!(m+n)l , (17) 
= (4n + 1)22" ( m -  n)!(2m + 2n + 1)l 

thus obtaining: 

4n ~ (4n+1)22 . 
~ ( m ) ( P  l '  P2 '  P3 )  = -~"  . = 0  

(2m)!(m+n)! V exp (iqz.r) p2n(cosOl)" (18) X (m-n)t(2m+ 2n+ 1)I "r" q2 

The lattice sums ~ exp (iql. r)P2.(cos Oz)/q 2 have been 
l 

formulated by Nijboer & De Wette (1957). They only 
exist for r # 0: 

~, exp (iqt. r) e2n(co s 0l) q{ 

1 [~,  F(n + 1,q2/4e 2) exp (iql. r) P2.(cos 0,) 
- F(n + 1) q~ 

I . . .  

+ (-1)"aS F(n+½'e21rl--rl2)p2.(cos 03--  ~i.o~ 
4re 3/----- '~-- l ~] I rz - r l  4ezJ ' 

(19) 

where r~ = llal + 12a2 +/aaa. F(n,x) is the incomplete 
gamma function and O~ the angle between the vector 
r~- r  and the z axis of the coordinate system. The 
numerical value of the lattice sum (19) does not depend 
on the parameter e, which, however, has a relatively 
strong influence on the convergence of both series and 
which should be chosen dependent on the shape of 
the unit cell. For a cubic or nearly cubic cell a value 
of e-~ Vn should be appropriate. 

The lattice sums ~v(0) (self potential) may be 
evaluated by means of Hund's (1935) identity: 

n~(npl,np2,npa) 

-- E E ~ Pa+n,P2+n,Pa+ , n>O. 
i=0  j = 0  k=0 

(20) 
For n = 2 a n d  r = 0 the self potential is obtained: 

71(0,0,0)= ~(0,0,½) + 71(0,½,0)+ ~'(½,0,0) + ~(0,½,½) 

+ ~(½,0,½)+ ~(½,½,0)+ ~(½,½,½). (21) 
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In using this method to calculate the Madelung con- 
stants of a series of crystals of one type of structure 
which differ only in the ratios of two lattice parameters, 
one should take the mean value of the axial ratios of 
the substances investigated as origin of the expansion 
in order to obtain optimum convergence of the series 
(15) and (16). 

This formalism can be applied to non-cubic struc- 
tures if one proceeds as follows: 

The components of the three fundamental transla- 
tions of the structure under consideration are written 
as columns which are then combined to form the 
Bravais matrix A: 

alx a2x a3x ) 
A=~alya2ya3y . (22) 

\ alz a2z aaz 
If the vectors r and rz of the real lattice are considered 
as columns and the vectors qz of the reciprocal lattice 
as rows, r has to be replaced by Ar (rt by Art) and ql 
by qlA-1 in the above mentioned equations to over- 
come the restriction to cubic Bravais lattices. 

Applications and results 

To demonstrate the capability of this method, the 
Madelung parameters (5) of the rutile and cadmium 
iodide structures have been calculated as a function 
of C/Co. In case of the rutile structure and of the cad- 
mium iodide structure, the axial ratio c/a of rutile and 
the axial ratio of a hypothetical compound with 
hexagonal close packing, respectively, were chosen as 
origin of the expansion in a series of powers of a with 

= 1 -(Co/C)2; Co is the length of the c axis in the above 
mentioned substances. 

For any compound with rutile or cadmium iodide 
structure and with the parameter u, given in Table 1, 
the Madelung constant Ma may be calculated ac- 
cording to: 

Co oo 
Ma= c Z c(mM(am) (23) 

m = O  

where Co =0.64395 a (ruffle) or Co = 1.633 a (cadmium 

Table 1. Lattice parameters of rutile (Wyckoff, 1965) 
and of a hypothetical CdI2-1ike structure with 

hexagonal close packing 

Symmetry 
a (A) 
c (A) 
co/a 
U 

Z 
Positions 

Ruffle CdI2-1ike 
tetragonal P4/mnm trigonal P32/ml 

4.59373 
2.95812 
0.64395 1.633 
0.3053 0.25 
2 1 

Ti 2(a)" 0, 0, 0 Cd l(a): 0, 0, 0 
1 I 1 -~, g ,  

O 4(f): U, U, 0 I 2(d): ½, 9, u 
~,~,0 ~,~,~ 
u+½,½-u,½ 
½-u, ~-½, -½ 

iodide). The structural data on which the calculations 
are based are given in Table 1. The coefficients Mr, r'° 
of the expansion up to m =  10 are shown in Table 2. 

Table 2. Coefficients M~m) for rutile and CdI2-like 
structures 

m Rutile CdI2-1ike 
0 11"2635098 6"1731884 
1 3"6798138 0"8523917 
2 1-7790991 -0"9284454 
3 1-5389700 - 1"8819179 
4 1-5996582 -2"4752279 
5 1-6875960 -2"8653720 
6 1-7406053 -3"1366386 
7 1-7530071 -3"3363966 
8 1"7333760 -3"4915026 
9 1"6920092 -3"6174671 

10 1"6375068 -3"7234901 

For the rutile structure the Madelung constant can 
be reproduced by this expansion in the range of ap- 
proximately 0.57 < c/a < 0.75, corresponding to I~1 = 
I1-(Co/C)21<0.27, with a relative error of less than 
10- 7. This range covers almost all known crystals with 
rutile structure. However, the parameter u is not 
strictly constant for all these substances, as is assumed 
here with u = 0.3053, but varies between approximately 
0.300 and 0.307. For rutile itself the Madelung con- 
stant Ma is given by the constant term Mta °) in the 
expansion (23) and has a value of 11.2635098. 

For the cadmium iodide structure c/a can be varied 
between 1.45 and 1.9, corresponding to I~1 < 0.27, with- 
out resulting in a relative error greater than 10 .7 
Therefore the Madelung constants of many crystals 
may be calculated by means of a single formula, as- 
suming that the parameter u is 0.25. The Madelung 
constants given in Table 3 are evaluated with the coef- 
ficients of Table 2. 

Table 3. Madelung constants Mafor some crystals 
with cadmium iodide structure 

Lattice parameters according to Wyckoff (1965), u=0.25 assumed 
for all substances. 

a c ot M a  

CaI2 4-48 A 6"96 A -0"1048668 6"3861126 
CoBr2 3"68 6 " 1 2  0"0358044 6"0903778 
Coi2 3"96 6 " 6 5  0"0543739 6"0450969 
Fe Br2 3" 74 6" 17 0"0201824 6" 1272148 
FeI 2 4"04 6 " 7 5  0"0447269 6"0688278 
GeI2 4" 13 6 " 7 9  0"0134186 6" 1428210 
MgBr2 3"81 6 - 2 6  0"0121895 6" 1456352 
MgI2 4"14 6 " 8 8  0"0344024 6"0937297 
MnBr2 3"82 6"19 -0.0155886 6.2075068 
MnI2 4.16 6.82 0.0078204 6.1555850 

However, the expansion for the Madelung constant 
obtained by the method presented here can be used 
in a wider range, if only fair precision is required. To 
obtain Figs. 1 and 2, which show the Madelung con- 
stants Ma, based on the lattice parameter a, and M,o, 
based on the shortest cation-anion distance to, of the 
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rutile and c a d m i u m  iodide structures as functions of 
c/a, only a few expansions were necessary to cover 
the whole range. 

Mr o 
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i , | i 

Ha 

H r 0 

Fig. 1. Madelung constants M, and Mro for the rutile structure as 
functions of c/a. 

In case of the rutile structure, the vectorial inter- 
a tomic distance which represents the smallest ca t ion-  
anion distance, changes at c/a = ( 8 u - 2 )  1/2 and is given 
by: 

j ' [2(0"5-u)  2 +0"25(c/a)Z] 1/2 for c/a<_(8u-2) x/2 
r ° =  ]u~/2 for c/a>_(8u-2) 1/2 . 

M, o has a m a x i m u m  for an axial ratio where both  
distances are equal, which means  that  each metal  a tom 
is equidistantly surrounded by six O atoms (Hoppe, 
1966): 

(c/a)M, o = max = (8U-- 2) 1/2 U > 0"2793. 

For  0.25 < u <0-2793, however, the m a x i m u m  of M,  o 
is not  connected with the condit ion of six equal  me ta l -  
oxygen distances, but  coincides with the m a x i m u m  of 
M..  The m a x i m u m  of M ,  for the rutile structure with 
u = 0-3053 is at (c/a)M, = max = 0"43797. 

The m a x i m a  of Ma and Mro for the cadmium iodide 
structure are at (c/a)M, = m a x  = 0"8170 and (c/a)Mro = m a x  ~ -  

0.9822, respectively. 
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Fig. 2. Madelung constants M. and M,0 for the cadmium iodide 
structure as functions of c/a. 

The calculations have been carried out at the Com- 
puter Center of the Technical  Universi ty of Vienna. 
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